Adaptively Tuned Iterative Low Dose CT Image Denoising
نویسندگان
چکیده
منابع مشابه
Adaptively Tuned Iterative Low Dose CT Image Denoising
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the p...
متن کاملConvolutional auto-encoder for image denoising of ultra-low-dose CT
OBJECTIVES The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed method was measured by using a chest phantom. MATERIALS AND METHODS Standard-dose and ultra-low-dos...
متن کاملAdaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated...
متن کاملLow Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
The continuous development and extensive use of CT in medical practice has raised a public concern over the associated radiation dose to the patient. Reduction of the radiation dose may lead to increased noise and artifacts, which can adversely affect the radiologists judgement and confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve the diagnostic perform...
متن کاملA Cascaded Convolutional Nerual Network for X-ray Low-dose CT Image Denoising
Image denoising techniques are essential to reducing noise levels and enhancing diagnosis reliability in low-dose computed tomography (CT). Machine learning based denoising methods have shown great potential in removing the complex and spatial-variant noises in CT images. However, some residue artifacts would appear in the denoised image due to complexity of noises. A cascaded training network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Mathematical Methods in Medicine
سال: 2015
ISSN: 1748-670X,1748-6718
DOI: 10.1155/2015/638568